Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We report the discovery of an extended emission-line region (EELR) in MUSE observations of Markarian 950, a nearby (z= 0.01628) poststarburst (PSB) galaxy that hosted the tidal disruption event (TDE) iPTF 16fnl. The EELR requires a nonstellar ionizing continuum with a luminosity erg s−1, inconsistent with the current weak state (LIR,AGN< 2.5 × 1042erg s−1) of the galactic nucleus. The ionized gas has low velocity (∼–50 km s−1) and low turbulence (σgas≲ 50 km s−1) and is kinematically decoupled from the stellar motions, indicating that the gas kinematics is not active galactic nucleus (AGN) driven. Markarian 950 is the third PSB galaxy to host a weak nuclear ionizing source as well as an EELR and a TDE. The overall properties of these three galaxies, including the kinematics and accretion history, are unusual but strikingly similar. We estimate that the incidence of EELRs in PSB-TDE hosts is a factor of ∼10 × higher than in other PSB galaxies. This suggests that a gas-rich postmerger environment is a key ingredient in driving elevated TDE rates. Based on the current observations, we cannot rule out that the EELRs may be powered through an elevated TDE rate in these galaxies. If the EELRs are not TDE powered, the presence of intermittent AGN activity, and in particular the fading of the AGN, may be associated with an increased TDE rate and/or an increased rate of detecting TDEs.more » « less
-
Abstract An accretion disk formed around a supermassive black hole after it disrupts a star is expected to be initially misaligned with respect to the equatorial plane of the black hole. This misalignment induces relativistic torques (the Lense–Thirring effect) on the disk, causing the disk to precess at early times, whereas at late times the disk aligns with the black hole and precession terminates1,2. Here we report, using high-cadence X-ray monitoring observations of a tidal disruption event (TDE), the discovery of strong, quasi-periodic X-ray flux and temperature modulations. These X-ray modulations are separated by roughly 15 days and persist for about 130 days during the early phase of the TDE. Lense–Thirring precession of the accretion flow can produce this X-ray variability, but other physical mechanisms, such as the radiation-pressure instability3,4, cannot be ruled out. Assuming typical TDE parameters, that is, a solar-like star with the resulting disk extending at most to the so-called circularization radius, and that the disk precesses as a rigid body, we constrain the disrupting dimensionless spin parameter of the black hole to be 0.05 ≲ ∣a∣ ≲ 0.5.more » « less
-
Galactic nuclei showing recurrent phases of activity and quiescence have recently been discovered. Some have recurrence times as short as a few hours to a day and are known as quasi-periodic X-ray eruption (QPE) sources. Others have recurrence times as long as hundreds to a thousand days and are called repeating nuclear transients. Here we present a multiwavelength overview of Swift J023017.0+283603 (hereafter Swift J0230+28), a source from which repeating and quasi-periodic X-ray flares are emitted from the nucleus of a previously unremarkable galaxy at ∼165 Mpc. It has a recurrence time of approximately 22 days, an intermediary timescale between known repeating nuclear transients and QPE sources. The source also shows transient radio emission, likely associated with the X-ray emission. Such recurrent soft X-ray eruptions, with no accompanying ultraviolet or optical emission, are strikingly similar to QPE sources. However, in addition to having a recurrence time that is ∼25 times longer than the longest-known QPE source, Swift J0230+28’s eruptions exhibit somewhat distinct shapes and temperature evolution compared to the known QPE sources. Scenarios involving extreme mass ratio inspirals are favoured over disk instability models. The source reveals an unexplored timescale for repeating extragalactic transients and highlights the need for a wide-field, time-domain X-ray mission to explore the parameter space of recurring X-ray transients.more » « less
-
HEX-Pis a probe-class mission concept that will combine high spatial resolution X-ray imaging ( FWHM) and broad spectral coverage (0.2–80 keV) with an effective area superior toNuSTARabove 10 keV to enable revolutionary new insights into a variety of astrophysical problems, especially those related to compact objects, accretion and outflows.HEX-Pwill launch at a time when the sky is being routinely scanned for transient gravitational wave, electromagnetic and neutrino phenomena that will require the capabilities of a sensitive, broadband X-ray telescope for follow up studies. These include the merger of compact objects such as neutron stars and black holes, stellar explosions, and the birth of new compact objects. A response time to target of opportunity observation requests of hours and a field of regard of 3πsteradians will allowHEX-Pto probe the accretion and ejecta from these transient phenomena through the study of relativistic outflows and reprocessed emission, provide unique capabilities for understanding jet physics, and potentially revealing the nature of the central engine.more » « less
-
Abstract We present the tidal disruption event (TDE) AT2022lri, hosted in a nearby (≈144 Mpc) quiescent galaxy with a low-mass massive black hole (104M⊙<MBH< 106M⊙). AT2022lri belongs to the TDE-H+He subtype. More than 1 Ms of X-ray data were collected with NICER, Swift, and XMM-Newton from 187 to 672 days after peak. The X-ray luminosity gradually declined from 1.5 × 1044erg s−1to 1.5 × 1043erg s−1and remains much above the UV and optical luminosity, consistent with a super-Eddington accretion flow viewed face-on. Sporadic strong X-ray dips atop a long-term decline are observed, with a variability timescale of ≈0.5 hr–1 days and amplitude of ≈2–8. When fitted with simple continuum models, the X-ray spectrum is dominated by a thermal disk component with inner temperature going from ∼146 to ∼86 eV. However, there are residual features that peak around 1 keV, which, in some cases, cannot be reproduced by a single broad emission line. We analyzed a subset of time-resolved spectra with two physically motivated models describing a scenario either where ionized absorbers contribute extra absorption and emission lines or where disk reflection plays an important role. Both models provide good and statistically comparable fits, show that the X-ray dips are correlated with drops in the inner disk temperature, and require the existence of subrelativistic (0.1–0.3c) ionized outflows. We propose that the disk temperature fluctuation stems from episodic drops of the mass accretion rate triggered by magnetic instabilities or/and wobbling of the inner accretion disk along the black hole’s spin axis.more » « less
-
Abstract We present ultraviolet, optical, and near-infrared photometric and optical spectroscopic observations of the luminous fast blue optical transient (LFBOT) CSS 161010:045834–081803 (CSS 161010). The transient was found in a low-redshift (z= 0.033) dwarf galaxy. The light curves of CSS 161010 are characterized by an extremely fast evolution and blue colors. TheV-band light curve shows that CSS 161010 reaches an absolute peak of mag in 3.8 days from the start of the outburst. After maximum, CSS 161010 follows a power-law decline ∝t−2.8±0.1in all optical bands. These photometric properties are comparable to those of well-observed LFBOTs such as AT 2018cow, AT 2020mrf, and AT 2020xnd. However, unlike these objects, the spectra of CSS 161010 show a remarkable transformation from a blue and featureless continuum to spectra dominated by very broad, entirely blueshifted hydrogen emission lines with velocities of up to 10% of the speed of light. The persistent blueshifted emission and the lack of any emission at the rest wavelength of CSS 161010 are unique features not seen in any transient before CSS 161010. The combined observational properties of CSS 161010 and itsM*∼ 108M⊙dwarf galaxy host favor the tidal disruption of a star by an intermediate-mass black hole as its origin.more » « less
-
Binaries containing a compact object orbiting a supermassive black hole are thought to be precursors of gravitational wave events, but their identification has been extremely challenging. Here, we report quasi-periodic variability in x-ray absorption, which we interpret as quasi-periodic outflows (QPOuts) from a previously low-luminosity active galactic nucleus after an outburst, likely caused by a stellar tidal disruption. We rule out several models based on observed properties and instead show using general relativistic magnetohydrodynamic simulations that QPOuts, separated by roughly 8.3 days, can be explained with an intermediate-mass black hole secondary on a mildly eccentric orbit at a mean distance of about 100 gravitational radii from the primary. Our work suggests that QPOuts could be a new way to identify intermediate/extreme-mass ratio binary candidates.more » « less
-
Abstract AT 2019azh is a H+He tidal disruption event (TDE) with one of the most extensive ultraviolet and optical data sets available to date. We present our photometric and spectroscopic observations of this event starting several weeks before and out to approximately 2 yr after theg-band's peak brightness and combine them with public photometric data. This extensive data set robustly reveals a change in the light-curve slope and a possible bump in the rising light curve of a TDE for the first time, which may indicate more than one dominant emission mechanism contributing to the pre-peak light curve. Indeed, we find that theMOSFiT-derived parameters of AT 2019azh, which assume reprocessed accretion as the sole source of emission, are not entirely self-consistent. We further confirm the relation seen in previous TDEs whereby the redder emission peaks later than the bluer emission. The post-peak bolometric light curve of AT 2019azh is better described by an exponential decline than by the canonicalt−5/3(and in fact any) power-law decline. We find a possible mid-infrared excess around the peak optical luminosity, but cannot determine its origin. In addition, we provide the earliest measurements of the Hαemission-line evolution and find no significant time delay between the peak of theV-band light curve and that of the Hαluminosity. These results can be used to constrain future models of TDE line formation and emission mechanisms in general. More pre-peak 1–2 days cadence observations of TDEs are required to determine whether the characteristics observed here are common among TDEs. More importantly, detailed emission models are needed to fully exploit such observations for understanding the emission physics of TDEs.more » « less
-
ABSTRACT Blue Large-Amplitude Pulsators (BLAPs) are a relatively new class of blue variable stars showing periodic variations in their light curves with periods shorter than a few tens of minutes and amplitudes of more than 10 per cent. We report nine blue variable stars identified in the OmegaWhite survey conducted using ESO’s VST, which shows a periodic modulation in the range 7–37 min and an amplitude in the range 0.11–0.28 mag. We have obtained a series of followup photometric and spectroscopic observations made primarily using SALT and telescopes at SAAO. We find four stars which we identify as BLAPs, one of which was previously known. One star, OW J0820–3301, appears to be a member of the V361 Hya class of pulsating stars and is spatially close to an extended nebula. One further star, OW J1819–2729, has characteristics similar to the sdAV pulsators. In contrast, OW J0815–3421 is a binary star containing an sdB and a white dwarf with an orbital period of 73.7 min, making it only one of six white dwarf-sdB binaries with an orbital period shorter than 80 min. Finally, high cadence photometry of four of the candidate BLAPs show features that we compare with notch-like features seen in the much longer period Cepheid pulsators.more » « less
An official website of the United States government
